Chemical Equilibrium

Set - 1

Table 7.1 Some Features of Physical Equilibria

Process	Conclusion
$\begin{array}{c} \text{Liquid} \;\; \rightleftarrows \; \text{Vapour} \\ \text{H}_2\text{O} \; \text{(I)} \;\; \rightleftarrows \; \text{H}_2\text{O} \; \text{(g)} \end{array}$	$p_{_{\mathrm{H}_{2}\mathrm{O}}}$ constant at given temperature
$\begin{array}{c} \text{Solid} \rightleftharpoons \text{Liquid} \\ \text{H}_2\text{O (s)} \rightleftharpoons \text{H}_2\text{O (l)} \end{array}$	Melting point is fixed at constant pressure
Solute(s) ⇌ Solute (solution) Sugar(s) ⇌ Sugar (solution)	Concentration of solute in solution is constant at a given temperature
$Gas(g) \rightleftharpoons Gas (aq)$ $CO_2(g) \rightleftharpoons CO_2(aq)$	[gas(aq)]/[gas(g)] is constant at a given temperature [CO ₂ (aq)]/[CO ₂ (g)] is constant at a given temperature

Q1. Which of the following statements are correct?

- A. (i),(iii) are correct
- B. (ii),(iv) are correct
- C. (i),(iii),(iv) are correct
- D. (i),(ii),(iii),(iv) are correct

Ans. (D)

Table 7.4 Relations between Equilibrium Constants for a General Reaction and its Multiples.

Chemical equation	Equilibrium constant
a A + b B ⇌ c C + dD	K_{c}
c C + d D ⇌ a A + b B	$K_{c}^{'} = (1/K_{c})$
$na A + nb B \rightleftharpoons ncC + ndD$	$K_c'' = (K_c^n)$

Q1. What is the equilibrium constant of reaction c C + d D \rightleftharpoons a A + b B, if equilibrium constant of the given reaction a A + b B \rightleftharpoons c C + dD is Kc.

- A. Kc
- B. (1/Kc)
- C. [Kc]²
- D. (Kc)³

Ans. (B)

Q2. If equilibrium constant for the reaction a A + b B \rightleftharpoons c C + dD is Kc, then equilibrium constant for the reaction na A + nb B \rightleftharpoons ncC + ndD is

- A. $(Kc)^{II}=(Kc)^n$
- B. $c(K)^{||}=1/(Kc)^{n}$
- C. $(Kc)^{II} = (Kc)^{n2}$
- D. $(Kc)^{II} = (Kc)^{1/n}$

Ans. (A)

Table 7.5 Equilibrium Constants, K_p for a Few Selected Reactions

Reaction	Temperature/K	K_p
$N_2(g) + 3H_2(g) = 2NH_3$	298	6.8 ×10 ⁵
	400	41
	500	3.6 ×10 ⁻²
$2SO_2(g) + O_2(g) = 2SO_3(g)$	298	4.0 ×10 ²⁴
	500	2.5 ×10 ¹⁰
	700	3.0 ×10 ⁴
$N_2O_4(g) = 2NO_2(g)$	298	0.98
	400	47.9
	500	1700

Q1. How will the Kp of the following reaction change at 400K and 500K respectively N2(g) + 3H2(g) = 2NH3

- A. Increases, increases
- B. Decreases, decreases
- C. Increases, decreases
- D. Decreases, increases

Ans. (C)

Q2. How will Kp of the following reaction change at 500K and 700K respectively $2SO2(g) + O2(g) \rightleftharpoons 2SO(g)$

- A. Decreases, increases
- B. Increases, increases
- C. Decreases, decreases
- D. Increases, decreases

Ans. (D)

Q3. What happens to the Kp of following reaction as the temperature increases $N2O4(g) \Rightarrow 2NO2(g)$

- A. decreases
- B. increases
- C. remains same

D. cannot say

Ans. (B)

Fig.7.6 Dependence of extent of reaction on K_c

Q1. For reactions having Kc less than 10-3

- A. Reaction rarely proceeds
- B. Products dominate reactants

11g. 1.0

- C. Appreciable range of reactants and products are present
- D. Cannot say

Ans. (A)

Q2. What happens for the reactions whose Kc value is greater than 10-3

- A. Reactant dominate products
- B. Products dominate reactants
- C. Appreciable range of reactants and products are present
- D. Cannot say

Ans. (B)

Q3. For reactions having Kc value in between 10-3and 103

- A. Reaction rarely proceeds
- B. Products dominate reactants
- C. Appreciable range of reactants and products are present
- D. Cannot say

Set - 5

Fig. 7.7 Predicting the direction of the reaction

Q1. What happens if a reaction has Qc

- A. Net reaction goes from left to right
- B. Net reaction goes from right to left
- C. Products and reactants are at equilibrium
- D. Cannot say

Ans. (A)

Q2. For reaction Qc>Kc, the

- A. Net reaction goes from left to right
- B. Net reaction goes from right to left
- C. Products and reactants are at equilibrium
- D. Cannot say

Ans. (B)

Q3. What happens if a reaction has Qc=Kc

- A. Net reaction goes from left to right
- B. Net reaction goes from right to left

C. Products and reactants are at equilibrium D. Cannot say Ans. (C) CLICK HERE (>> Get More Learning Materials Here: www.studentbro.in